

Probing galaxy merger activity through HI global profile asymmetries

Sarah Blyth (UCT), Jamie Bok (SAAO/UCT) & David Gilbank (SAAO)

Galaxy evolution

Our current models of structure evolution imply galaxies evolve through the successive merging of smaller structures into larger ones...

Mergers

- Optically, mergers are identified by:
 - morphological distortions
 - tidal features
 - close pairs

Mergers and HI

HI is a good indicator of galaxy-galaxy interactions:

• HI typically located at larger R than stars where asymmetry more severe

Mergers and HI

HI is a good indicator of galaxy-galaxy interactions:

- HI typically located at larger R than stars where asymmetry more severe
- HI susceptible to tidal interactions, stripping, etc.

[Hogg & Roberts (2001), HI rogues gallery]

But... could be other causes for lopsidedness:

• accretion, outflows...

Quantifying distortions

There is a range of 'morphometrics' which are used to quantify galaxy distortions in 2D OPTICAL images:

- CAS parameters (concentration, asymmetry, smoothness) [Bershady+ (2000), Conselice+ (2000), Conselice (2003)]
- Gini [Abraham+ (2003)]
- M₂₀ [Lotz+ (2004)]

Quantifying distortions

There is a range of 'morphometrics' which are used to quantify galaxy distortions in 2D OPTICAL images:

- CAS parameters (concentration, asymmetry, smoothness) [Bershady+ (2000), Conselice+ (2000), Conselice (2003)]
- Gini [Abraham+ (2003)]
- M₂₀ [Lotz+ (2004)]
- Holwerda et al. & Giese et al. have recently applied these to HI image data

$$A = \frac{\sum_{i,j} |I(i,j) - I_{180}(i,j)|}{2\sum_{i,j} |I(i,j)|}$$

From 2D to 1D...

Upcoming SKA-pathfinder surveys (WALLABY + APERTIF surveys) will find 1000s of spatially resolved HI galaxies in the local universe...

- BUT, deeper HI surveys (CHILES, DINGO, LADUMA) will obtain 100s-1000s of **spatially unresolved** detections at higher z
- HI global profiles reflect large-scale structural properties of HI disks [Richter & Sancisi (1994)]

2D HI asymmetric distributions map to 1D HI global profile asymmetries:

From 2D to 1D...

Upcoming SKA-pathfinder surveys (WALLABY + APERTIF surveys) will find 1000s of spatially resolved HI galaxies in the local universe...

- BUT, deeper HI surveys (CHILES, DINGO, LADUMA) will obtain 100s-1000s of **spatially unresolved** detections at higher z
- HI global profiles reflect large-scale structural properties of HI disks [Richter & Sancisi (1994)]
- A number of studies have focussed on quantifying HI global profile asymmetries in **field** and **isolated galaxy samples** [Richter & Sancisi (1994), Haynes+ (1998), Espada+ (2011)]

Q: Can HI global profile asymmetries be used to identify mergers?

AIM:

• to investigate if HI global profile asymmetries can provide merger information

Approach:

- Define a sample of close pairs (with at least one HI detected galaxy member)
- Quantify the global HI asymmetry
- Compare with an isolated HI galaxy sample for reference

Data

We use a combination of ALFALFA HI data and SDSS optical data

- ALFALFA α40 catalogue [Haynes+ (2011)]
- Reliable detections (code 1s) with SDSS (DR7) optical counterparts (spectroscopic)

Pairs: (247)

- Match HI optical counterpart (OC) to nearest neighbour in SDSS spectroscopic catalog
- r < 100 kpc , Δv < 1000 km/s (like [Robotham+, 2014])
- Also eliminate HI-HI pairs to minimise contamination from confusion

Isolated: (776)

•r > 500 kpc , Δv > 5000 km/s

Systematic checks

Deblended objects in SDSS can create problems - these are removed

Systematic checks

Optical counterpart matching is also checked...

Good match:

Systematic checks

Optical counterpart matching is also checked...

Good match:

Bad match:

Low S/N profiles result in large uncertainties on the measured A_c parameter:

Low S/N profiles result in large uncertainties on the measured A_c parameter:

Low S/N profiles result in large uncertainties on the measured A_c parameter:

Low S/N profiles result in large uncertainties on the measured A_c parameter:

 We remove all profiles with S/N <10 from both the isolated and pair samples

• The K-S test implies that our 2 samples are not drawn from the same distribution...

• Espada et al. have measured the HI profile asymmetries in a very isolated sample of AMIGA galaxies [Verdes-Montenegro+, 2005]:

- Although the HI data is not homogeneous, great care taken to estimate uncertainties due to:
 - noise in spectrum, V_m, telescope pointing errors

• Espada et al. have measured the HI profile asymmetries in a very isolated sample of AMIGA galaxies [Verdes-Montenegro+, 2005]:

[Espada et al., 2011]

Sample	N	σ	$A_{\rm flux\ ratio} > 1.26$
H I refined subsample	166	0.13	9 %
Haynes et al. (1998)	104	0.13	9 %
Haynes et al. (1998) no CIGs	80	0.13	10 %
Matthews et al. (1998)	30	_	17 %
Bournaud et al. (2005)	76	0.23	22 %
Combined, no CIGs	186	0.17	16 %

[Espada et al., 2011]

Sample	N	σ	$A_{\rm flux\ ratio} > 1.26$
H I refined subsample	166	0.13	9 %
Haynes et al. (1998)	104	0.13	9 %
Haynes et al. (1998) no CIGs	80	0.13	10 %
Matthews et al. (1998)	30	_	17 %
Bournaud et al. (2005)	76	0.23	22 %
Combined, no CIGs	186	0.17	16 %

378 129 Isolated (this work) Close pairs (this work) 21% 32%

• Our close-pair sample seems to show greater HI profile asymmetries than field and isolated samples

Summary & outlook

• Preliminary results indicate a higher rate of HI global profile asymmetry in close pairs than in our isolated sample and field / isolated samples in the literature

Next steps

- Further 'clean up' our isolated sample
- Quantify uncertainties (check sensitivity to choice of V_m, confusion contamination, etc.)
- Identify Ac dependence on pair mass-ratio (major vs. minor mergers)
- Compare optical and HI asymmetries in the samples (in progress)