BAO from Integrated Neutral Gas Observations HI Intensity Mapping using a novel single-dish radio telescope

Sambit Roychowdhury

Jodrell Bank Centre for Astrophysics, The University of Manchester

on behalf of the BINGO collaboration

with inputs from

Clive Dickinson & Stuart Harper

2017 PHISCC Workshop

NCRA, Pune

Feb 06, 2017

The University of Manchester

Plan of the talk

- Introducing BAOs and Intensity Mapping
- Introducing BINGO
- Why BINGO is competitive scientifically
- Challenges & how to address them
- Additional science possibilities
- Conclusions and project status

Introducing BAOs and Intensity Mapping

Baryon Acoustic Oscillations (BAOs)

- Acoustic waves imprinted on CMB 380,000 years after Big Bang
 - Acoustic scale set by distance light travelled at that time
 - Scale known to 0.2% precision from CMB power spectrum (147.4±0.3 Mpc)
- Simulations clearly show that this preferred scale is imprinted on all matter in the Universe at the level of ~5%
- BAOs are a "standard ruler" to measure expansion history of the Universe
 - Constrain cosmological models and dark energy

BAOs at optical wavelengths

- First BAO detection (Eisenstein 2005)
 - ~47000 galaxies correlation function
- Massive improvements over last few years with large spectroscopy surveys
 - 2dF, 6dF, WiggleZ, BOSS (SDSS-III)....
- Future surveys: DES, DESI, Euclid....

BAO Hubble diagram

- Relative volume-averaged distance vs redshift
- Test expansion rate models of the Universe
- Requires precise measurements over a range of redshifts

BOSS papers (e.g. Anderson et al. 2014)

(HI) Intensity Mapping in a nut-shell

- Efficient alternative to measuring >10⁶ galaxies individually (Peterson 2006)
 - e.g. BOSS, WiggleZ, Euclid, SKA...
- Use emission line to map *fluctuations*
 - HI, CO, CII...
 - Power spectrum as a function of frequency (redshift)
- Use relatively large beam on the sky (small telescope)
- Redshift directly given by frequency
- No absorption along line-of-sight
- HI is a good tracer of mass on large scales (not strongly biased)

Large beam on the sky (~1 deg) contains large number of galaxies

Typical expected frequency spectrum

Battye et al. (2013)

The HI (21cm) power spectrum

Cosmological HI signal is weak! (≈100 µK rms) and on degree scales

l≈(200/θ) degrees

SKA

- SKA-MID
 - Phase 1: ~200 15m dishes in South Africa acting as an interferometer!
- Baselines too long to be useful for BAOs via intensity mapping
- Bull et al. (2014) showed that in single-dish ("autocorrelation") mode, it could be hugely sensitive!
 - More powerful than Euclid!

Introducing BINGO

BINGO concept

- A pathfinder for SKA
- Key specifications:
 - Dish diameter : 40 m
 - Resolution: ~2/3 deg
 - Frequency range : 960 1260 MHz (z=0.12-0.48)
 - Number of feeds: 50 (dual pol)
 - Field-of-view: ~15 deg, at (-5) -20 dec
 - No cryogenic cooling : Tsys ~ 50K
 - Digital correlation receiver
 - Channel width << 50 MHz (Δz <0.05)
 - Majority of receiver components "off-the-shelf"
 - Transit telescope (no moving parts): observe declination strip with drift scans
 - 2 years observing (~1 year on source)

Guiding principle : simplicity!

Battye, Browne, Dickinson, Heron, Maffei, Pourtsidou, 2013, MNRAS, 434, 1239 [arXiv:1209.0343]

BINGO concept

- A pathfinder for SKA
- Key specifications:
 - Dish diameter : 40 m
 - Resolution: ~2/3 deg
 - Frequency range : 960 1260 MHz (z=0.12-0.48)
 - Number of feeds: 50 (dual pol)
 - Field-of-view: ~15 deg, at (-5) -20 dec
 - No cryogenic cooling : Tsys ~ 50K
 - Digital correlation receiver
 - Channel width << 50 MHz (Δz <0.05)
 - Majority of receiver components "off-the-shelf"
 - Transit telescope (no moving parts): observe declination strip with drift scans
 - 2 years observing (~1 year on source)

Guiding principle : simplicity!

Crossed-Dragone configuration

Battye, Browne, Dickinson, Heron, Maffei, Pourtsidou, 2013, MNRAS, 434, 1239 [arXiv:1209.0343]

BINGO players

• U. Sao Paolo, Brazil

- Elcio Abdalla (P.I.), Raul Abramo, Mike Peel (FAPESP Fellow, ex-Manchester), Andreia Pereira de Souza (engineer), Benjamim Galvão (engineer, industry liaison), Marcos Lima
- INPE, Brazil
 - Alex Wuensche, Thryso Villela, Renato Branco (engineer)
- U. de la Republica, Montevideo; Ministry of Communications, Uruguay
 - Gonzalo Tancredi, Manuel Calas, Emilio Falco, Ana Mosquera
- JBCA, Manchester, UK
 - Richard Battye, Ian Browne, Tianyue Chen, Peter Dewdney (SKAO), Richard Davis, Clive Dickinson, Keith Grainge, Stuart Harper, Lucas Olivari, Mathieu Remazeilles, Sambit Roychowdhury, Peter Wilkinson
- ETH, Zurich, Switzerland
 - Alex Refregier, Adam Amara, Christian Monstein
- UCL, London, UK
 - Filipe Abdalla
- IAS, Paris, France
 - Bruno Maffei (ex-Manchester)
- U. Cardiff, UK
 - Giampaolo Pisano
- UKZN, South Africa
 - Yin-Zhe Ma (ex-Manchester)
- U. Portsmouth, UK
 - Alkistis Portsidou (ex-Manchester)

Why BINGO is competitive scientifically

BINGO on BAO Hubble diagram

- Additional points on BAO Hubble diagram competitive with current surveys
- Consistency check with different technique and systematics
- Proof-of-concept/pathfinder for SKA autocorrelation

BINGO on BAO Hubble diagram

- Additional points on BAO Hubble diagram competitive with current surveys
- Consistency check with different technique and systematics
- Proof-of-concept/pathfinder for SKA autocorrelation

- Additional points on BAO Hubble diagram competitive with current surveys
- Consistency check with different technique and systematics
- Proof-of-concept/pathfinder for SKA autocorrelation

- Additional points on BAO Hubble diagram competitive with current surveys
- Consistency check with different technique and systematics
- Proof-of-concept/pathfinder for SKA autocorrelation

- Additional points on BAO Hubble diagram competitive with current surveys
- Consistency check with different technique and systematics
- Proof-of-concept/pathfinder for SKA autocorrelation

- Additional points on BAO Hubble diagram competitive with current surveys
- Consistency check with different technique and systematics
- Proof-of-concept/pathfinder for SKA autocorrelation

BINGO sensitivity

1 year on-sky (2 years in practice)

- Ultra deep HI maps over ~5000 sq. deg.
 - ~100 µK sensitivity
- Detection of BAOs at \sim 5-7 σ
 - Measurement of acoustic scale to $\delta k_{\text{A}}/k_{\text{A}} \sim 0.024$
 - Constrain dark energy δw/w ~ 0.16

Much more cosmological information from the HI power spectrum itself (Olivari et al., in prep.)

Challenges & how to address them

It is not going to be easy!

- Large telescope!
- Novel horn fabrication to reduce weight and cost
- 1/f noise (pink noise correlated over various timescales)
- Radio Frequency Interference (RFI): satellites, mobiles, aeroplanes, ...
- Bright foreground emissions 10⁵ times stronger!
 - Diffuse Galactic radio emission
 - Extragalactic sources
- Calibration and stability \rightarrow in time and frequency
- Sidelobe pick-up

. . . .

Atmospheric fluctuations

Custom built to keep instrumental effects under control from design stage itself

Quantify effect of other sources of error by designing an end-to-end pipeline

Improve methods for doing component separation, etc.

Tackling 1/f noise

- 1/f knee frequency of typical receivers ~1 Hz
 - Produces long time-scale fluctuations of total-power (1/f noise)
 - larger noise level, stripes in the map...

Correlation receiver

- 1/f knee frequency of typical receivers ~1 Hz
 - Produces long time-scale fluctuations of total-power (1/f noise)
 - larger noise level, stripes in the map...
- Perfect pseudo-correlation (e.g. WMAP/Planck) can remove 1/f noise
- Use (South) Celestial Pole as reference

Battye et al. (2013)

Correlation receiver

- 1/f knee frequency of typical receivers \sim 1 Hz
 - Produces long time-scale fluctuations of total-power (1/f noise)
 - larger noise level, stripes in the map...
- Perfect pseudo-correlation (e.g. WMAP/Planck) can remove 1/f noise
- Use an 'active' cold noise source, COLFET as reference

(Frater & Williams, 1981)

BINGO beams

Pixel Position	Forward Gain	Ellipticity	Peak X-Pol	FWHM
	$^{\mathrm{dB}}$		dB	arcmin
Centre Edge	49.8 49.6	10^{-3} 0.07	-40 -35	38 39

- Careful optical design (Bruno Maffei)
- Beam must be well-known with minimal sideline and X-pol response
- New 2-dish compact antenna range design gives even better performance

Battye et al. (2013)

Foreground contamination

- Diffuse Galactic continuum radiation synchrotron and free-free radiation
- Spectrum expected to be smooth (should allow for it to be subtracted)
- Mean ~5K at 1 GHz

•

Fluctuations on degree scales ~70mK

Foreground contamination

• Extragalactic point sources

- 1.4 GHz source counts well known above ~1 mJy
- Not well known below this
- <u>
 <u>
 AT~6 mK</u> from Poisson part

 </u>
- Clustered sources at lower flux density may dominate on ~1 deg scales
 - NVSS: w_I~0.0048 I^{-1.2}
 - ΔT~48 mK

Battye et al. (2013)

Foreground contamination

Foreground	\bar{T}	δT	Notes
	(mK)	(mK)	
Synchrotron	1700	67	Power-law spectrum with $\beta \approx -2.7$.
Free-free	5.0	0.25	Power-law spectrum with $\beta \approx -2.1$.
Radio sources (Poisson)	_	5.5	Assuming removal of sources at $S > 10$ mJy.
Radio sources (clustered)	_	9.1	Assuming removal of sources at $S > 10$ mJy.
Extragalactic sources (total)	205	10.6	Combination of Poisson and clustered radio sources.
CMB	2726	0.07	Blackbody spectrum, ($\beta = 0$).
Thermal dust	_	${\sim}2 imes 10^{-6}$	Model of Finkbeiner, Davis & Schlegel (1999).
Spinning dust	_	${\sim}2 imes10^{-3}$	Davies et al. (2006) and CNM model of Draine & Lazarian (1998).
RRL	0.05	3×10^{-3}	Hydrogen RRLs with $\Delta n = 1$.
Total foregrounds	$\sim\!\!4600$	${\sim}67$	Total contribution assuming that the components are uncorrelated.
HI	~ 0.1	~ 0.1	Cosmological H1 signal we are intending to detect.

Component separation

- Dominant foregrounds are expected to be spectrally very smooth
- HI signal fluctuates in frequency allowing for it to be extracted
- Simple PCA can do a remarkable job by removing the first few eigenmodes of the frequency-frequency covariance matrix
 - BUT assumes calibration is *perfect*!
- Generalized Needlet internal Linear Combination (GNILC): New method which uses frequency and spatial information → developed by Olivari et al., (2016)

Intensity Mapping Pipeline

Cosmological Parameters

Additional science possibilities

Additional science with BINGO

1. BAOs and HI spectrum contain additional information

- Matter density, RSD, anisotropic BAOs, curvature, neutrino masses, non-Gaussianity, growth of structure...
- Life history of hydrogen (Ω_{HI} , bias, T_{spin})
- Cross-correlation with other LSS tracers (ISW, weak lensing...)
- 2. Fast Radio Bursts (FRBs/"Lorimer" bursts)
 - New transient sources (~20 known)
 - Very bright but only last a few milliseconds!
 - First one localized recently (Chatterjee+ 2017)
 - BINGO is an ideal survey instrument (~1 detection/week estimated)
 - BINGO phase-3 : add outriggers to do accurate astrometry

Lorimer et al. (2007)

Additional science with BINGO

3. Associated HI absorption in selected continuum sources

- Allison et al. 2014 → from 4 compact AGNs and nuclear starbursts using shallow HIPASS survey with 15.5 arcmin beam
- The HI cloud (~100 pc) covers the region having majority of the emission

- BINGO: sensitive coverage of a large part of sky upto higher z → many such potential sources which would have otherwise been flagged
- Any detection will be followed up by targeted interferometric observations

Additional science with BINGO

3. Associated HI absorption in selected continuum sources

- Allison et al. 2014 → from 4 compact AGNs and nuclear starbursts using shallow HIPASS survey with 15.5 arcmin beam
- The HI cloud (\sim 100 pc) covers the region having majority of the emission

- BINGO: sensitive coverage of a large part of sky upto higher z → many such potential sources which would have otherwise been flagged
- Any detection will be followed up by targeted interferometric observations

Conclusions and project status

• BINGO is a novel experiment to make an ultra-deep redshifted HI survey at z-0.1-0.5

- Much cheaper than large optical surveys (hardware \sim \$3M)
- Complementary to optical galaxies/surveys
- Test of HI intensity mapping technique
- Pathfinder for SKA and future intensity mapping experiments
- More data points on the BAO Hubble diagram \rightarrow constrain cosmology
- Deep large-area spectral radio survey will have many other benefits
 → suggestions regarding potential additional (HI) science very welcome!
- We are basically ready to go!
 - Good collaboration with wide range of expertise
 - Basic design ready
 - Hardware components and software techniques being tested
 - Good site identified with local support
 - Funding from FAPESP (Brazil) approved for ~\$3M
 - One year long Phase I started in December 2016

