

www.apertif.nl

## APERTIF

#### HI imaging surveys

#### Marc Verheijen

Kapteyn Astronomical Institute National Centre for Radio Astrophysics





/ Kapteyn Astronomical Institute



10<sup>th</sup> PHISCC, Pune, 6-8 Feb 2017

# a grand proposal

#### WSRT upgrade - SKA pathfinder

APERTIF

After 45 years of service, transform the WSRT into an efficient 21 cm survey facility using phased-array technology.

|                     |                     | APERTIF   | MFFE     |
|---------------------|---------------------|-----------|----------|
| # antennas/dish     |                     | 121       | 2        |
| # primary beams     |                     | 37        |          |
| field-of-view       | [deg <sup>2</sup> ] | 8         | 0.3      |
| freq. range         | [GHz]               | 1.13-1.75 | 0.12-8.7 |
| T <sub>sys</sub>    | [K]                 | 70        | 30       |
| aperture efficiency |                     | 75%       | 55%      |
| bandwidth           | [MHz]               | 300       | 160      |
| # channels          |                     | 24576     | 1024     |
| # dishes            |                     | 12        | 4 (13)   |

 $(A_{eff}/T_{sys})^2 MFFE-14 = 4x (A_{eff}/T_{sys})^2 A_{pertif-12}$ 



 $\begin{array}{l} \underline{\text{APERTIF Resolution}:} \\ \Theta = (1+Z)^2 \times 15^{"} \times 15^{"} / \sin(\delta) \\ & (10 \text{kpc} @ D=150 \text{ Mpc}) \\ \text{R} = (1+Z) \times 2.6 \text{ km/s} \end{array}$ 

APERTIF increases survey speed of WSRT 20x



### hardware developments

#### a fully reconstructed signal chain



### on-sky performance

#### Holography





- standing waves eliminated
- beam & pol. stability OK
- 75% aperture efficiency
- 8 deg<sup>2</sup> FoV confirmed

#### The promise of Apertif/

10<sup>5</sup> HI detections, 10<sup>4</sup> resolved HI disks









Mpati Ramatsoku, Davide Punzo

### Radio Frequency Interference



### HI mass & column density limits

Based on Alfalfa HIMF



APERTIF

Imaging surveys: 1430–1130 MHz

 $I \times I2^{hr}$ :  $M^*_{HI}$  at z=0.08 I \times I0^{11} M\_{sun} at z=0.25

#### Expectation:

- ► 10<sup>5</sup> HI detections
- I 0<sup>4</sup> resolved galaxies
- ► 10<sup>7</sup> continuum sources

#### Note:

smoothing to  $\Theta$ =30" reduces survey volume at fixed linear resolution by a factor 8 .

# Inventory of community interest



Based on input from the community:

- shallow northern-sky survey (SNS)
- medium-deep survey (MDS)
- pulsar/transients survey (PTS)
- Galactic plane survey (GPS)

commensal transients search survey

Nominal : 4-year survey period (2017–2021), 15% DD time (?), 10% maintenance, 75% efficiency, <sup>1</sup>/<sub>3</sub> of time to a survey

 $\rightarrow$  6700<sup>hr</sup> = 550×12<sup>hr</sup> per survey

Extended : full northern-sky survey (10,000 deg<sup>2</sup>)

# Apertif Survey Design

### Guiding principles:

ERTIF

- public, legacy-type surveys (archival science) based on ideas from 18 Expressions-of-Interest++
- maximum ancillary data availability
- community involvement & commitment
- collaborate, compromise, consolidate
- be ambitious yet realistic
- simplicity
  - few observing modes, fixed pointing grid
- staged delivery of data and science

# Apertif Survey Plan

Three imaging and one pulsar/transients surveys :

PERTIF

- Shallow (1x12<sup>hr</sup>), large-area (~3000 deg<sup>2</sup>) imaging overlap with SDSS, PanStarrs-I, MaNGA, Califa, HetDex, S<sup>4</sup>G
- Medium-deep (10x12<sup>hr</sup>), medium-area (~300 deg<sup>2</sup>) imaging overlap with H-Atlas+Coma, CVn, HetDex, Perseus-Pisces
- Apertif-LOFAR (4x12<sup>hr</sup>, ~10 fields of 10 deg<sup>2</sup>) imaging
- Wide-field pulsar and transients survey (3<sup>hr</sup>, 15.000 deg<sup>2</sup>) triggers LOFAR for accurate FRB positions

Surveys to be conducted by the community

# Apertif Survey Team

<u>Erwin de Blok</u> - Higal : rotation curves and galaxy edges <u>Thijs van der Hulst</u> - HIstoryNU : The HI story of the Nearby Universe Kelley Hess, Manolis Papastergis, Davide Punzo, Nadine Giese - ARTS : Apertif Radio Transients Survey <u>loeri van Leeuwen</u> <u>Raffaella Morganti</u> - SHARP : Search for HI absorption with Apertif Bjorn Adebahr, Filippo Maccagni Tom Oosterloo - HuDaGa : The search for the smallest galaxies Betsey Aams, Antonino Marasco - HIperEdge : HI perspective on Env. Driven Gal. Evol. Marc Verheijen Danielle Lucero - HI in early-types Anastasia Ponomareva - Tully-Fisher, mass models (\w K.C. Freeman) NN postdoc - observing simulations Avanti Gogate - local environment, groups Pooja Bilimogga - global environment, cosmic web - stacking, HIMF,  $\Omega_{HI}$  (\w S.L. Blyth) Julia Healy Mpati Ramatsoku - ZoA pilot study (\w R.C. Kraan-Korteweg) NN PhD student - galaxy cluster outskirts (\w B.M. Poggianti)

Science requirement :  $N_{HI}^{min} \approx 5 \times 10^{19}$ 

#### Accretion, depletion and removal of gas



Gas disks are responsive to environmental influences and reveal processes not easily observed otherwise.

PERTIF

10<sup>th</sup> PHISCC, Pune, 6-8 Feb 2017

# Apertif Survey Plan



APERTIF

- Shallow Northern Survey
- Medium-Deep Survey
- LOFAR fields

SNS: 3,000 deg<sup>2</sup> IxI2<sup>hr</sup>/pointing

MDS: 300 deg<sup>2</sup> 10x12<sup>hr</sup>/pointing

PTS: 15,000 deg<sup>2</sup> 3<sup>hr</sup>/pointing

10 LOFAR fields: 4x12<sup>hr</sup>/pointing

Pointing grid and survey boundary details to be determined.

### beam packings

#### Relative FoV sensitivity

APERTIF

#### Relative Compound Beam sensitivity



Kelley Hess

FoV vs noise uniformity

'Electronic vignetting' :
8.0 deg<sup>2</sup> → ~40% spatial noise variations
5.6 deg<sup>2</sup> → ~15% spatial noise variations

# Pointing grids & survey uniformity



APERTIF

**Kelley Hess** 

# Synergy - MaNGA & Weave

#### A SDSS-IV multi-IFU survey of 10<sup>4</sup> nearby galaxies at $z \approx 0.03$



I7 IFU's per 7 deg<sup>2</sup> field
I2''-32'' FoV per IFU
360-1000 nm
R=2000



<sup>10&</sup>lt;sup>th</sup> PHISCC, Pune, 6-8 Feb 2017

## Synergy - MaNGA & Weave

#### A SDSS-IV multi-IFU survey of 10<sup>4</sup> nearby galaxies at $z \approx 0.03$



# Apertif Survey Plan

#### MaNGA fields

APERTIF

lacksquare

#### Califa pointings





# Synergy - Herschel-Atlas

Blind Herschel PACS/SPIRE imaging of North Galactic Pole region (~150 deg<sup>2</sup>)

APERTIF

PACS:I 10, 170 μm~500 sources/deg2SPIRE:250, 350, 500 μm $\Theta$ =18" at 250 μm



Complete SED reconstruction:

- Total energy output
- Star Formation Rates
- Dust masses and temperatures

# All data are publicly available.

#### 1/12<sup>th</sup> of NGP field, including Coma



# Synergy - HETDEX

A blind IFU survey using VIRUS on HET

22% fill factor over 300 deg<sup>2</sup>

APERTIF

- ► I.5" fibers
- ▶ 448 fibers/IFU, 78 IFUs
- ▶ 350-550 nm

Ly- $\alpha$  : Z=1.9-3.5 [OII] : Z= 0-0.48 H $\beta$  : Z= 0-0.13 [OIII] : Z= 0-0.10

▶ R=700





~10<sup>5</sup> [OII] redshifts in Apertif bandwidth (Z $\leq$ 0.25)

→ 50" spacing 10<sup>th</sup> PHISCC, Pune, 6-8 Feb 2017

### computing resources

66 baselines correlator 1440x30sec 24,567 channels full stokes data writer 37 beams + metadata Long-Term Archive = 2.9 TB / 12 hrsusers calibrated Happili cluster Cuby cluster visibilites AperCal MDS reprocessing 5 nodes, 20 CPUs 9 nodes, 18 CPUs 360 cores 240 cores 240 TB storage I.3 PB storage 10<sup>th</sup> PHISCC, Pune, 6-8 Feb 2017

# Cuby MDS reprocessing cluster



PERTIF

science data products (catalogues, cubes, maps, profiles,...)

10th PHISCC, Pune, 6-8 Feb 2017

Summary

#### 

Shallow Northern-sky Survey : ~3,000 deg<sup>2</sup>,  $1 \times 12^{hr}$  per pointing NHI<sup>min</sup>  $\approx 2 \times 10^{20}$  (cm<sup>-2</sup>)

APERTIF

 $\frac{\text{Medium-Deep Survey}}{\sim}:$   $\sim 300 \text{ deg}^2, 10 \times 12^{\text{hr}} \text{ per pointing}$   $N_{\text{HI}}^{\text{min}} \approx 5 \times 10^{19} \text{ (cm}^{-2}\text{)}$ Selected areas with ancillary data

Public legacy archive, VO-compliant