

International Centre for Radio Astronomy Research

Parkes 21 cm Intensity Mapping Experiments

Jonghwan Rhee (ICRAR/UWA)

In collaboration with: Lister Staveley-Smith (ICRAR/UWA), Laura Wolz (Univ. of Melbourne), Stuart Wyithe (Univ. of Melbourne), Chris Blake (Swinburne Univ.)

💡 Curtin University

Government of Western Australia Department of the Premier and Cabinet Office of Science

Mapping the Universe

- 3D mapping of the Universe is a powerful tool to study large-scale structures.
- Galaxy redshift surveys at optical wavelength. (e.g. CfA redshift survey , 2dFGRS, SDSS, WiggleZ, GAMA)

Mapping the Universe in 21 cm

- Neutral hydrogen is a good tracer of matter distribution
- HI 21 cm line can be directly translated into redshift.
- Measuring the collective HI 21 cm emission from many galaxies without individual detection.
- Cosmological probe for measuring the baryon acoustic oscillation (BAO) feature and Redshift Space Distortion (RSD).
- Constraining cosmic HI density (Ω_{HI}) evolution at intermediate redshift (0.5 < z < 2.0).

HI gas evolution over cosmic time

HI gas evolution over cosmic time

HI gas evolution over cosmic time

HI gas evolution over cosmic time

CRAR

HI gas evolution over cosmic time

Parkes Intensity Mapping

- Parkes telescope used to map the WiggleZ fields.
- Single beam 50cm receiver at frequency: 700 - 764 MHz (0.86 < z < 1.03, <z> ~ 0.94), 2048 channels (31.25 kHz)
- Scan rate: 0.25 or 2 deg/min, FWHM: 30'
- WiggleZ contains 15,713 redshifts in the redshift.

WiggleZ survey fields

Name	RA _{min} (deg)	RA _{max} (deg)	Dec. _{min} (deg)	Dec. _{max} (deg)	Area (deg ²)
0 h	350.1	359.1	-13.4	+1.8	135.7
1 h	7.5	20.6	-3.7	+5.3	117.8
3 h	43.0	52.2	-18.6	-5.7	115.8
9 h	133.7	148.8	-1.0	+8.0	137.0
11 h	153.0	172.0	-1.0	+8.0	170.5
15 h	210.0	230.0	-3.0	+7.0	199.6
22 h	320.4	330.2	-5.0	+4.8	95.9

Challenges: RFI

- RFI contamination.
 - Broad-band RFI @ 720, 740, 760MHz (UHF TV chan)
 - 4G transmitter @ 763 MHz
- RFI flagging: threshold-clipping

Active scan vs. Drift scan

- Active scan: basket-weaving pattern, 2°min⁻¹ scan rate
- Drift scan: only ra direction scan, 0.25°min⁻¹ scan rate

Drift scan vs. active scan

Drift scan vs. active scan

Challenges: Foregrounds

- Foreground emissions from Galactic and extragalactic sources (~10⁴ stronger than HI signal).
- Synchrotron emission and free-free electron emission

Independent Component Analysis (ICA)

Decomposing the observed data into statistically independent components.

 Scientific application in Astronomy: used as a promising foreground removal technique for CMB, EoR, intensity mapping (e.g. Bottino et al. 2008, Chapman et al 2012, Wolz et al. 2013)

Foreground removal using ICA

Foreground removal using ICA

Foreground removal using ICA

CRAR

PHISCC2017 in Pune, Feb 8, 2017

Cross power spectrum

Cross power spectrum of W15d

PHISCC2017 in Pune, Feb 8, 2017

Fast Intensity Mapping using PAFs

- Phased-array feed (PAF) installed on the Parkes
- Same Mk-II PAF as ASKAP but modified for a single dish
- Larger field of view $0.2 \text{ deg}^2 => 1.4 \text{ deg}^2$
- Wider bandwidth 384 MHz 64 MHz => 384 MHz Band 1: 699.5 - 1083.5 MHz Band 2: 1148.5 - 1532.5 MHz

 2 WiggleZ fields @ band 1 + 1 GAMA field @ band 2 completed.

HI spectra from known galaxies

CRAR

Summary

- HI intensity mapping is a promising approach to constrain HI gas evolution at intermediate redshifts.
- Challenges: RFI mitigation and foreground
- Intensity mapping using PAF: more suitable for fast intensity mapping.
- Next generation PAF cryogenically cooled is being planned.