

F. Maccagni; R. Morganti; T. Oosterloo; K. Geréb; N. Maddox, J. Allison

THE LAST SURVEY OF THE 'OLD' WSRT: DISCOVERING HI ABSORPTION IN LOW POWER RADIO SOURCES

ASSOCIATED HI ABSORPTION

- ~ 40% of early-type galaxies have HI: ATLAS^{3D} [Serra et. al 2012]
- Early-type galaxies are the typical host of a radio-AGN.
- In radio-AGN is possible to detect HI in absorption against the radio continuum.
- Detection of absorption is independent of redshift (if the background continuum is strong enough).
- HI absorption studies can be carried out in a shallow survey, with a few hours of exposure time per object.
 - Absorption allows us to study the HI content of galaxies to high redshifts (z<1).</p>
 - HI absorption studies are complementary to HI emission studies.

HI ABSORPTION IN RADIO AGN

- HI absorption can trace positive feedback between the radio source and the host galaxy.
- Shallow blue shifted wings in the absorption line often trace outflows of cold gas pushed by the radio jet.
- The HI has the same kinematics as the other molecular cold gas components (e.g. CO, H2, etc).
 - Study feedback between AGN and cold gas.

[Morganti et al. 2013]

THE LAST SURVEY OF THE OLD WESTERBORK

- ▶ 0.02 < z < 0.25
- SDSS spectroscopy
- ► $S_{Cont} \ge 30 \text{ mJy}$
- Wide range of Radio Powers
- mostly AGN in early-type galaxies
- Two separate Data Releases:
- 1. 101 sources; $S_{Cont} \ge 50 \text{ mJy}$
 - Stacking experiment [Geréb et al., 2014]
 - Analysis of the detections [Geréb , Maccagni, et al., 2015]
- 2. All 248 sources
 - This Talk [Maccagni et al., submitted]

Mid-InfraRed [22 µm] - Radio Power Relation

CHARACTERISATION OF THE SAMPLE

- WISE MIR colours characterise the host galaxy of the radio-AGN.
 - Dust-poor sources (green)
 - 12 µm-bright sources (orange)
 - Emission from PAHs and heated dust.
 - 4.6 µm-bright sources (black)
 - The central AGN heats the surrounding circumnuclear dust.

CHARACTERISATION OF THE SAMPLE

- Compact sources (red):
 - unresolved by FIRST.
 - often radio-jets on sub-galactic scales.
 - many compact sources are young AGN.
- Extended sources (blue):
 - resolved by FIRST.
 - radio-jets on super-galactic scales.
 - usually older AGN than compact sources.

DETECTING HI ABSORPTION

- Observe all sources with flux > 30 mJy and available SDSS spectrum.
 - Bulk of the radio population is at low fluxes [Mauch & Sadler 2007]
 - Detection of HI absorption at all redshifts.
- Shallow survey: mostly limited to high optical depths (τ~ 0.05-0.1)
- We also detect lines with very shallow peak (τ <0.007)

DETECTING HI ABSORPTION

- 248 sources / 66 Detections
 - 27 % ± 5.5 % detection rate
 - We detect HI absorption at all redshifts and at all radio powers.
 - Detection of HI constant with z, and radio power.
- Compact sources, 4.6 µm-bright and 12 µmbright
 - HI often detected (~40%).
- Extended sources & dust-poor sources
 - HI is rarely detected (~13%).

HI ABSORPTION LINES

- 66 detections
- Ine properties measured with the BusyFunction [Westmeier, et al. 2014]
- 30 < FWHM < 570 km/s</p>
- 70 < FW20 < 640 km/s</p>
 - 3 main groups:
 - Narrow lines:
 - FWHM < 100 km/s
 - Medium width lines:
 - 100 km/s <FWHM < 200 < km/s
 - Broad lines:
 - FWHM > 200 km/s

INTERPRETING HI ABSORPTION

- Understand the overall distribution of the HI traced by the absorption line
 - Narrow lines at the systemic velocity usually identify a rotating disk
 - What to can we infer from only the integrated line and the continuum image?
 - Help of a kinematical model:
 - Model the rotating HI disk in front of the radio continuum:

INTERPRETING HI ABSORPTION

- We fix the parameters of the disk from available information on the galaxy:
 - Optical Image: i, PA
 - Continuum image
 - Tully Fisher -> V_{flat}
- We find which disk best reproduces the line
 - The bulk of the absorption is well reproduced by a rotating disk
 - Blue-shifted wing not reproduced by the model

INTERPRETING HI ABSORPTION

- MCMC wrap: investigate the parameter space of I & PA automatically
 - find which combination best reproduces the line
- **Future applications:**
 - can we reproduce the observed distributions of properties of the lines (e.g. FWHM, tau) by simulating 10^N disks?
 - investigate the degeneracy between parameters of the disk.
 - understand when orientation effects between the host galaxy and the radio continuum play a role in detecting HI absorption.

x [kpc]

z [kpc]

Jy

Flux

[kpc]

x [kpc]

KINEMATICS OF THE HI

▶ P_{1.4GHz} < 10²⁴ W Hz⁻¹

- Ines have widths ≤ rotational velocity of the galaxy.
- the HI is probably settled in a rotating disk.
- P_{1.4GHz} > 10²⁴ W Hz⁻¹
 - we detect broad lines.
 - the HI has unsettled kinematics.
- Sources with broad lines are:
 - Compact, i.e. jets within the galaxy.
 - MIR bright, i.e. rich in heated dust.

KINEMATICS OF THE HI

P_{1.4GHz} < 10²⁴ W Hz⁻¹

- lines are centred at the systemic velocity
- ▶ P_{1.4GHz}> 10²⁴ W Hz⁻¹
 - lines are offset w.r.t. systemic velocity
 - the offset is mainly in blue-shifted velocities.
- Sources with asymmetric, shifted lines are:
 - Compact, i.e. jets within the galaxy.
 - MIR bright, i.e. rich in heated dust.
- Dust-poor sources
 - lines are narrow, mainly centred at the systemic velocity.
 - Typical signature of a rotating disk.

STACKING EXPERIMENT

- Non-detections are important!!!!
 - Stacking experiment to search for HI absorption at very-low optical depths.
 - Stacking of 170 non-detections
 - NO LINE is detected at ~ 0.0015 (3σ)
 - Stacking of sub-groups of sources
 - NO LINE is detected at ~ 0.003 (3 σ)
 - Not even in compact sources or MIRbright sources.

STACKING THE ATLAS^{3D} NON-DETECTIONS

- Stacking of 81 ATLAS3D sources where the HI is non detected in the centre.
- 3σ detection of an HI emission line
 - ▶ N(HI) ~ 7.7 x 10¹⁸ cm⁻²
 - On average, early-type galaxies have HI at very low column densities in the centre.
- The low column density HI we find from stacking may be present also in the stronger radio sources of our sample.
 - N(HI) converted in optical depth (T_{spin}~100 K)
 - τ~ 0.0006 << 0.0015</p>
 - we need to stack more to detect this gas in absorption.

N(HI) <
$$2x10^{20}$$
 cm⁻² if T_{spin} > 600 K.

- The HI we see stacking ATLAS 3D may be warm!
- ► $\mathsf{T}_{\mathsf{spin}} \uparrow \Rightarrow \tau \downarrow ; \mathsf{T}_{\mathsf{spin}} \downarrow \Rightarrow \tau \uparrow$
- Stacking in absorption even more difficult if T_{spin} ~ 10³ K.

THE UPCOMING HI ABSORPTION SURVEYS

- HI absorption surveys with the SKA pathfinders and precursors
 - SHARP at Apertif
 - MALS at MeerKAT
 - FLASH at ASKAP
 - WALLABY: absorption at low redshift "for free".
- From the continuum source population and our detection rate (27%) we predict what these surveys will detect for HI absorption

- The surveys are complementary to investigate the HI content in sources of radio power between 1022 and 1027 W Hz-1
- SHARP (and WALLABY) will allow us to detect HI absorption in low-power radio sources.

THE UPCOMING HI ABSORPTION SURVEYS

- All surveys will detect all the different kinds of HI absorption lines
 - High optical depth (>0.1)
 - Intermediate optical depth (0.02)
 - Low optical depth (> 0.002)
 - typical signatures of outflows.

• Only SHARP and WALLABY will be able to detect low optical depth HI lines ($\tau > 0.002$) in low power sources (P_{1.4GHz} ~ 10²⁴ W Hz⁻¹)

- 27%±5.5% detection rate of HI in absorption
- HI detected at all redshifts (0.02 < z < 0.23) and radio powers</p>
- AGN with radio power < 10²⁴ W Hz⁻¹ only show narrow lines. AGN with P_{1.4GHz}>10²⁴ W Hz⁻¹ show broad lines which can trace HI with unsettled kinematics
- Broad lines are found in compact, i.e. often young, radio AGN, and in MIR-bright sources.
- Dust poor sources only show narrow lines.
- Stacking experiment suggests a low optical depth HI component is present in the centre of non-detections. This gas may be warmer than the one detected by single observations.
- Upcoming HI absorption surveys are complementary. We will be able to investigate the HI content in radio sources of all radio powers (10²² 10²⁶ W Hz⁻¹), out to z~1.

ADVERTISEMENT

HI absorption with the new radio telescopes

- WORKSHOP at AST(RON)
- <u>14 -16 June 2017</u>
 - status of the telescopes and data available for early science;
 - planning for HI absorption surveys;
 - experience built in the last years and tools available for the handling and analysis of new data;
 - follow-up and ancillary data: molecular gas, optical identifications, high resolution radio data;
 - requirements and possibilities for comparison with numerical simulations.

SOC: Raffaella Morganti Elaine Sadler Tom Oosterloo James Allison Neeraj Gupta

Dust-poor sources

- lines are narrow.
- lines have high optical depth.
 - Typical signature of a rotating disk.
- MIR bright sources
 - lines can be shallow and broad, if P_{1.4GHz} > 10²⁴ W Hz⁻¹
 - lines can also be asymmetric because they have a blue-shifted wing
- In powerful radio sources the jets may unsettle the HI.
 - via outflows pushed by the radio jets
 - ► ⇒ blue shifted wing in the absorption line

SURVEY STRATEGY

1.340

1.320

Frequency $[\times 10^9 \text{ Hz}]$

promising result for the upcoming Apertif-Sharp and ASKAP-FLASH surveys, which will search for HI absorption in every source of the field.