Southern Local Group Dwarf Irregulars with KAT-7

Brenda Namumba
PhD student
Dept. of Astronomy, University of Cape Town

Supvrs: Prof.C. Carignan & Dr. S. Passmoor

PHISCC 2017
Outline

- Background
- Motivation
- Observations & Results
- On going work
- Conclusion
Background

Why the Local Group of galaxies?

~10 million light years across

~54 galaxies

Dwarfs most abundant
Background

Why the Local Group of galaxies?

~10 million light years across

~54 galaxies

Dwarfs most abundant
Background

Types of dwarf galaxies & why are they interesting.

Dwarf galaxies

Late type

Dwarf Irregular galaxies
Gas rich, star formation, gas kinematics.

Early type

Dwarf spheroidal/dwarf elliptical
Little/no gas, little/no star formation, stellar kinematics.
Types of dwarf galaxies & why are they interesting.

Dwarf galaxies

Late type

Dwarf spheroidal/dwarf elliptical
- Little/no gas, little/no star formation, stellar kinematics.

Dwarf Irregular galaxies
- Gas rich, star formation, gas kinematics.

- Proximity, study in greater details
- Little studied, extremely faint long integration
- Simple structure, without dominant bulges, spiral arms.
Background

What can we learn from HI observation? –previous results

Low column density extended HI envelopes: < 5 time optical disk
superb for studying large scale kinematics

Estimate the actual mass of galaxies

NGC 3741 HI diameter = 8.3 times Holmberg radius (A.Begum et al, 2005, GMRT)

DDO 154 6 times Holmberg radius, extended rotation curve (Carignan et al, 1998)
Background

What can we learn from HI observations? – previous results

Environment of extended HI disks

disrupted HI disks

NGC 4449 complex network of streamers that represents the remains of an HI disk disrupted by an encounter with another galaxy (VLA) (Hunter et al, 1998)

quiescent disks smooth extensions

KK 246, large, quiescent disks that are simply smooth extensions (K. Krechel et al, 2011, VLA)

- Most of these observations are high resolution or single dish. What new idea does this study bring?
Motivation

Unique array in southern hemisphere

KAT-7 compact low temperature (Tsys ~26K) (sensitive to large scale low surface brightness emission.
Motivation

why this project?

Unique array in southern hemisphere

KAT-7 compact low temperature (Tsys ~26K) (sensitive to large scale low surface brightness emission.

*Search for extended HI envelopes (undetected by array such as VLA and ATCA.**

*Derive global parameters such as HI distribution and kinematics.**

*Study the environment of low density gas

KAT-7 array
Observations & results

NGC6822 with KAT-7

- Three pointing mosaic. ~35 hour per pointing after flagging
- ~3 mJy/beam rms in 2.56 kms\(^2\) channel
- 23 % more flux than ATCA
 (2440 ±200 Jy.kms\(^2\) , comparable with single dish)
- HI mass 1.3 x 10\(^8\) M\(\odot\)
Observations & results

NGC6822 with KAT-7

HI column density on DSS image. Lowest contour 1×10^{19} cm2. Order of magnitude than ATCA (10^{20} cm2)
NGC6822 with KAT-7

- RC derived using GIPSY task ROTCUR from velocity field map.
- RC agrees with ATCA data.
- KAT-7 extends 500 arcsec more than ATCA.
Observations & results

NGC6822 with KAT-7

- NGC6822 DM dominated
- DM ISO model produces observed rotation curve with $M/L=0.2$
- NFW not physical only fits with $M/L = 0$.
- NGC6822 is cored not cuspy DM halo.
Ongoing work

Sextans A & B – KAT-7

- ~ 60 hours on source
- Synthesized beam 277” x 204 “
- Noise level 3.4 mJy/beam
- Flux 181 Jy.km/s

- ~ 51 hours on source
- Synthesized beam 255“ x 191”
- Noise level 4 mJy/beam
- Flux 105 Jy.km/s
Ongoing work

WLM & IC1613 -GBT

- ~14 hours observation
- noise in line free channel 20 mK
- Integrated flux 333 Jy.km/s

- ~14 hours observation
- noise in line free channels 13mK
- Integrated flux 566 Jy.km/s
Conclusion

- HI studies in dwarf irregulars gives rich information about galaxy kinematics and distribution.

- Capabilities of KAT-7 gives us an opportunity to detect large scale extended HI as we wait for up coming pathfinders

- NGC6822, we detect ~23 % more flux than ATCA with rotation curve going out 500 arcsec more than ATCA.

- GBT sensitivity allows us to detect the presence of low column density regions.