Imaging Galaxies' Intergalactic and Nearby Environment

Attila Popping

PHISCC 2017 Pune, 7 February 2017

International Centre for Radio Astronomy Research

THE UNIVERSITY OF Western Australia

Simple model of galaxy evolution

Simple model of galaxy evolution

Stellar Mass

Stellar mass locked in galaxies increases with time

Star Formation

Cosmic star formation drives the stellar mass growth

What drives the star formation history?

Molecular Gas

Star formation efficiency is very constant at z=0

Leroy et al. 2008

Molecular gas is a transition phase that should be replenished at all times.

PHISCC 2017, Pune India

Neutral Hydrogen

Where is the gas ...?

The observed evolution of the cosmic and "local" star formation requires a large gas reservoir and gas accretion from the intergalactic medium at all redshift

Credit: ESO/L. Calçada/ESA/AOES Medialab

Forms of accretion

- Many simulations predict that gas is accreted by galaxies in two forms (e.g. Birnboim & Dekel 2003, Keres et al. 2005, 2009).
- Hot accretion flows are gas that is shock-heated to the virial temperature; T > 10⁵ K
- Cold accretion flows remain below T_{vir}, < 10⁵ K, and falls onto galaxy along filaments.
- At z=0, cold mode should be dominant for M_{halo} ≤ 10¹¹ M_☉ and in low density environments.

Credits: NASA/CXC/M.Weiss/Ohio State/A Gupta et al

Credit: ESA-AOES Medialab

Multi-phase extraplanar gas

Deep observations of (edge-on) spirals show thick, vertically extended, multi-phase layers of gas, dust, and magnetic fields

PHISCC 2017, Pune India

CAASTRO ANC CLENITIRE OF EXCELLENCE FOR ALL-SKY ASTROPHYSICS

Questions:

- What is the nature of extra-planar gas in galaxies
- What is the importance of (cold) accretion and can we detect it

NGC 891 (Oosterloo+)

Simulated Gas

 $log(N_H)$ Total Hydrogen component

-	20.8
-	20.6
-	20.4
-	20.2
-	20.0
-	19.8
-	19.6
-	19.4
	19.2
	19.0

21.0

SPH simulation

32 h^{-1} Mpc

Popping et al. 2009

Simulated HI Gas

 $\log(N_{HI})$ Neutral Hydrogen component

Popping et al. 2009

SPH simulation

32 h^{-1} Mpc

Individual galaxies

Gas in the extended halo of galaxies is clumpy

 $N_{HI} \sim 10^{18-19}$ cm⁻² required at ~kpc resolution to detect and resolve the environment of individual galaxies.

GIMIC: Crain et al.

Improving observations

HI distribution function

At 10¹⁷ cm⁻² area is twice that at 10¹⁹ cm⁻² but virtually nothing is known about the morphology

HI Filaments

Braun & Thilker 2004

Very faint emission NHI~10¹⁷ cm⁻²

WSRT used as an array of single dish telescopes

A Deep GBT survey

Wolfe et al. 2016

12 square degrees between M31 and M33

NHI ~ 2x10¹⁷ cm⁻²

9' GBT beam, 5 km/s

Deep pointing to the northwest of M31

ATCA: New opportunities

Wouldn't it be nice to image the environment of not one, but a whole sample of galaxies down to $N_{HI} \sim 10^{18}$ cm⁻². And even better, do this with an interferometer to have decent resolution....

IMAGINE

CAASTRO ALL SKY ASTROPHYSICS

ATCA legacy project C3157 Imaging Galaxies Intergalactic and Nearby Environment

PI: Attila Popping (ICRAR / UWA)

- Observe 28 spiral Galaxies and their direct environment
- Use 8 most compact configurations of ATCA (12 hours each)
- Total time 2688 hours
- NHI~2.5x10¹⁷ cm⁻² over 20 km s⁻¹.
- resolution 1' to 2.5'

www.imagine-survey.org

IMAGINE Science

- Measure the extended gas content of galaxies to detect gas accretion and outflows.
- Determine the environment of gas accretion
- Detect the densest peak of the underlying Cosmic Web.
- Missing satellite problem.
- Continuum source variability at low flux levels over the full survey area.
- Studies of warps and lopsidedness in spiral galaxies.
- Studies of HI in absorption by using bright background sources.
- Studies of angular momentum.
- Lower column densities by stacking sight-lines in the halos of galaxies.
- Linear polarisation
- Circular polarisation
- OH mega-masers
- SKA-SDP testing
- . . .

Craig Anderson Erwin de Blok Thanapol Chanapote **Richard Dodson** Jonah Gannon George Heald Jane Kaczmarek Dane Kleiner Baerbel Koribalski Karen Lee-Waddell Angel Lopez-Sanchez Juan Madrid Martin Meyer Vanessa Moss Danail Obreschkow

DJ Pisano Attila Popping (PI) Chris Power Jonghwan Rhee Aaron Robotham Amy Sardone Lee Spitler Lister Staveley-Smith Kevin Vinsen Jing Wang **Tobias Westmeier** Andreas Wicenec Christian Wolf Chen Wu

IMAGINE sample

NGC0024 NGC0045 NGC0625 ESO154-023 NGC1433 NGC1512 NGC1515 NGC1617 NGC1744 NGC1792 NGC2188 ESO209-009 NGC2835 NGC2997 NGC3109 NGC3137 NGC3175 ESO214-017 NGC3511 ESO270-017 ESO274-001 ESO138-010 NGC6300 IC5052 NGC7090 IC5201 NGC7424 NGC7793

IMAGINE sample

- Spirals
- Distance < 15 Mpc
- Declination < -20 degrees
- Optical diameter 5' < D_{25} < 20'
- Inclination 35 80 or 90 degrees
- HIPASS bounding box < 45 arcmin

IMAGINE Point Spread Function

ATCA beam -29°50' -29°55 Declination (J2000) -30°00' -30°05' -30°10' 0^h00^m30^s $0^{h}00^{m}00^{s}$ 23h59m30s Right Ascension (J2000)

IMAGINE Field of View

Status update

- Observations started in Oct 2016 (H168)
- Continued in Jan 2016 (EW368 & 750b)
- About 350 hours observed
- Observations will finish in the next two years

www.imagine-survey.org

Other efforts

- Computing: Dec 2016 awarded 250,000 hours on Magnus
 - automated processing
 - DiLuiGe workflow
 - implement other science cases
- Single dish: Dec 2016 applied for Parkes time
 - fill the zero spacings
 - get extra sensitivity
 - extend the area out to the virial radius
- Low surface brightness optical data
 - IMAGINE galaxies prioritised by Skymapper
 - IMAGINE galaxies targets for StarFox and Huntsman

StarFox

StarFox is a 100mm aperture Vixen astrograph refracting telescope designed to detect ultralow surface brightness structure [<28*Mag Arcsec*⁻²].

NGC2997: Jonah Gannon

FOR ALL-SKY ASTROPHYSICS

sensitivity comparison

- * Understanding gas accretion is one of the fundamentals of Galaxy evolution
- * To see gas accretion in HI column densities of $N_{HI} \sim 10^{18}$ cm⁻² are required
- * New telescopes (SKA, FAST, etc) will really change this field
- We started the IMAGINE survey on ATCA which will set a benchmark for coming years
- * If you have access to telescopes the can provide the diffuse optical component of these fields, please let me know
- * If you think data of this survey is useful for your science, please let me know