RFI Mitigation at the MeerKAT site

Anja Schröder South African Astronomical Observatory (anja@hartrao.ac.za)

Outline

- RFI team at SKA-SA
- RFI policies
- RFI monitoring on site
- RFI database
- Student projects

RFI team

• RFI team at SKA-SA:

- Carel van der Merwe
- now a subsystem equal to others
- 6 FTE (plus one in the near future)
- standing contract with 2 consulting groups:
 - MESA (at Stellenbosch)
 - ITC (at Pretoria)
- tasks: checking, testing, policing, monitoring, propagation and attenuation simulation
 - this year: focus on monitoring, both developing and operations

RFI team

- RFI Working Group:
 - with representatives from
 - system engineers, science processing team, commissioning team, users, consulting groups, liaison to farmers on site,
 - tasks: advisory; to inform, discuss interdisciplinary problems, combine forces, manage research projects
- RFI Committee:
 - 5 people
 - tasks: set policies, make decisions (e.g., on permits)

RFI policies: external

- Astronomy Geographic Advantage Act
- AGA regulations: regulates RFI levels on site
 - -> finalised in ~1 month
 - -> gives operators one year to comply
- e.g.,
 - => GSM at 900MHz
 - => Alkantpan Test Range (military testing site to the north):
 - -> memorandum of agreement on minimising effects
 - => TV (UHF):
 - -> migration from analog to digital, that is, 623MHz; sender been switched off last week

RFI policies: internal

- Policies for permits are now approved and procedures in place
 - every item will be tested:
 - pass -> certificate
 - fail -> note to fix
 - fail but needed -> permit with restrictions in distance from antennae or in time;
- Database with spectrum and temporal behaviour

RFI policies: examples

Examples:

- X-band receivers failed the test (strong internal RFI which affect the other receivers on the indexer)
 - -> permit for 2 weeks for tests on site, then removal

RFI policies: examples

Examples:

- S-band receivers failed the test (strong internal RFI which affect the other receivers on the indexer)
 - -> permit for 2 weeks for tests on site, then removal
- aircraft communication
 - cannot deviate flights
 - instead restriction to selected few channels
 - flight paths predictable -> scheduling

RFI policies: during construction

- Restrictions increase with project:
 - "what was good enough for KAT 7, is not good enough for MeerKAT"
 - "what was good enough for MeerKAT, is not good enough for SKA Phase 1"
 - => standards change: what levels/thresholds to accept
- Audit of MeerKAT site in 2018:
 - not all needs to pass but necessary to understand the RFI situation
 - -> how best to schedule observations in combination with
 permits: e.g., day-night
 - -> compile a 'hitlist' of undesirables

RFI Monitoring

- Real Time Analyser (RTA):
 - omni-directional antenna
 - Version 4: updated with new SKARAB (ROACH3) version to be consistent with SKA backend
 - -> mid-2018
 - now: RTA v3.5 (within next weeks):
 - · ROACH2
 - 2 fixed position antennae
 - 1 mobile antenna
 - improved calibration with noise sources
 - remote login functionality
 - monitor occupancy (for permits)
 - monitor compliance with policies (confirm 'switching off')

- MeerKAT:
 - 'best' monitor
 - can use receivers on the indexer to observe the horizon (while antanna elevation is 15°)
 - advantage: cooled receiver
 - special monitoring mode of MeerKAT:
 - 20-minute scan of horizon
 - at twilight
 - to verify permits
 - for statistics

- RFI monitoring data (both from MeerKAT and RTA) can be used to test algorithm for flagging, excising etc
 - same archive, same data formats
- customers:
 - RFI team: for verification of internal and external RFI policies
 - students: for R&D
 - scientist: for comparison with their observations
 - MeerKAT telescope: for smart scheduling

RFI classes

- 3 groups:
 - intentional transmitters (external)
 - strong but easy to ID (know frequencies)
 - licensed transmitters
 - unintentional transmitters:
 - usually broadband
 - EMI, e,g., digital with clock, screens, network
 - tricky to deal with
 - transients:
 - short time
 - worst to identify
 - anything with a switch (e.g., air-conditioner)

PhD project: Gerald N. Balekaki (UCT Comp Science)

- A complete RFI database for the MeerKAT site
- A two-fold record of each RFI:
 - all known culprits (for identification)
 - record of observed RFI on site (for occupancy studies, mitigation, etc)
- Distinguish between known and unknown RFI
 - \Rightarrow they vary greatly in nature and source
 - \Rightarrow need to classify
- Determine source and nature of each RFI
- Enable data mining

RFI Database

- Goal: develop prototype to
 - investigate advanced techniques for Big Data
 - discover structure of the data
 - discover nature of the data in order to classify
 - use it
- Key challenges of Big Data: Volume, velocity, variety, veracity (i.e., inherent unreliability of some data)
 - makes it difficult for us to capture, store, analyze and acquire intelligence about them

RFI Database: Design Challenges

Traditional DB are impractical to handle Big Data

- 95% of the entire existing data is unstructured
- =>
- New modeling techniques:
 - discover 'nature' of data to classify and fit into the structure of the DB
 - -> decision on DB and its purpose
 - extract 'knowledge' (i.e., pattern) from the data
 - -> goes into design of DB
- Advanced statistical methods/tools:
 - machine learning

RFI Database: Analytical Challenges

- Advanced CASE (Computer-Aided Software Engineering) tools needed (e.g., efficient storage, matching, interfaces):
 - probabilities instead of facts
 - keep only relevant information
 - \Rightarrow Associative methodology instead of relationships

RFI Database: Analytical Challenges

Choice of Data Models for large datasets:

Design aspects	Associative DB Models/NoSQL	Relational DB Models
Data Models	No Pre-defined Schema (Highly adaptive)	Defined Schemas
Data Structure	Unstructured Data (makes up 95% of Big Data)	Fairly Structured data
Scaling	Can scale over cheap commodity equipment/servers	Requires bigger, more expensive equipment servers
Development Model	Open source	Closed –Requires licenses, fees etc

RFI Database: Prototype Outcome

- Rapid identification & classification of RFI signals
- Efficient storage of the large amounts of RFI data captured
- Scalability of the prototype such that:
 - it can accommodate other classification modes
 - it can be extended to other observatories

Student projects

- List of past, present and future student projects
 - better organisation of what is needed
 - do not repeat
 - help and supplement each other
- ⇒ plan to incorporate all RFI endeavours into a webpage or wiki

Student projects (e.g.)

- Daniel Czech (PhD at UCT) RFI Source Classification
 - Use time domain signals of RFI emitters
 - apply speech recognition techniques

Transients

- Each event = a sequence of tiny interference impulses, or transients.
- Hypothesis:
 - Transients from different events might be similar.
 - All transients might belong to a fixed dictionary.

Student projects (e.g.)

- Daniel Czech (PhD at UCT)
 RFI Source Classification
 - Use time domain signals of RFI emitters
 - apply speech recognition techniques
 - works well on some emitters

Student projects (e.g.)

- Daniel Czech (PhD at UCT)
 RFI Source Classification
 - Use time domain signals of RFI emitters
 - apply speech recognition techniques
 - works well on some emitters
- Kai Staats (MSc at UCT):

Genetic Programming Applied to RFI Mitigation

- computer programs are encoded as a set of genes that are modified using an evolutionary algorithm
- training set from KAT-7

RFI flagging for MeerKAT data

MeerKAT pipeline (for imaging):

- variant of AOFlagger (Tom Mauch)
- bootstrapped using a static RFI mask for:
 - ~900 MHz
 - ~1200-1300MHz

Summary

- RFI policies exist and permits are used on anything that goes on site
- RFI monitoring continues and efforts are increased
- New RFI database to store and identify known and new RFI
- RFI flagging in the MeerKAT pipeline based on AOFlagger
- Many student projects covering:
 - RFI control on site
 - RFI monitoring, detection and classification
 - RFI subtraction in the data